The C. elegans gene vab-8 guides posteriorly directed axon outgrowth and cell migration.
نویسندگان
چکیده
The assembly of the nervous system in the nematode C. elegans requires the directed migrations of cells and growth comes along the anteroposterior and dorsoventral body axis. We show here that the gene vab-8 is essential for most posteriorly directed migrations of cells and growth cones. Mutations in vab-8 disrupt fourteen of seventeen posteriorly directed migrations, but only two of seventeen anteriorly directed and dorsoventral migrations. For two types of neurons that extend axons both anteriorly and posteriorly, vab-8 mutations disrupt only the growth of the posteriorly directed axon. vab-8 encodes two genetic activities that function in the guidance of different migrations. Our results suggest that most posteriorly directed cell and growth cone migrations are guided by a common mechanism involving the vab-8 gene.
منابع مشابه
The conserved kinase UNC-51 acts with VAB-8 and UNC-14 to regulate axon outgrowth in C. elegans.
Directional cues guide growth cones. While molecules like UNC-6/netrin direct migrations along the dorsoventral axis of many organisms, it is unclear how anteroposterior guidance is achieved. We describe a physical interaction between VAB-8, a protein both necessary and sufficient for posteriorly directed migrations in C. elegans, and UNC-51, a conserved serine/threonine kinase that functions g...
متن کاملvab-8 Is a Key Regulator of Posteriorly Directed Migrations in C. elegans and Encodes a Novel Protein with Kinesin Motor Similarity
Nervous system assembly requires the directed migrations of cells and axon growth cones along the dorsoventral and anteroposterior axes. Although guidance mechanisms for dorsoventral migrations are conserved from nematodes to mammals, mechanisms for anteroposterior migrations are unknown. In C. elegans, the gene vab-8, which specifically functions in posteriorly directed migrations, encodes two...
متن کاملThe C. elegans even-skipped homologue, vab-7, specifies DB motoneurone identity and axon trajectory.
Locomotory activity is defined by the specification of motoneurone subtypes. In the nematode, C. elegans, DA and DB motoneurones innervate dorsal muscles and function to induce movement in the backwards or forwards direction, respectively. These two neurone classes express separate sets of genes and extend axons with oppositely directed trajectories; anterior (DA) versus posterior (DB). The DA-...
متن کاملDistinct cell guidance pathways controlled by the Rac and Rho GEF domains of UNC-73/TRIO in Caenorhabditis elegans.
The cytoskeleton regulator UNC-53/NAV2 is required for both the anterior and posterior outgrowth of several neurons as well as that of the excretory cell while the kinesin-like motor VAB-8 is essential for most posteriorly directed migrations in Caenorhabditis elegans. Null mutations in either unc-53 or vab-8 result in reduced posterior excretory canal outgrowth, while double null mutants displ...
متن کاملCharacterization of loss-of-function and gain-of-function Eph receptor tyrosine kinase signaling in C. elegans axon targeting and cell migration.
To understand how our brains function, it is necessary to know how neurons position themselves and target their axons and dendrites to their correct locations. Several evolutionarily conserved axon guidance molecules have been shown to help navigate axons to their correct target site. The Caenorhabditis elegans Eph receptor tyrosine kinase (RTK), VAB-1, has roles in early neuroblast and epiderm...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Development
دوره 122 2 شماره
صفحات -
تاریخ انتشار 1996